
Multivariable Grid Search Method
for optimization, control and auto-calibration

September 25, 2016

1



Contents
1 Introduction 3

2 Matlab m file 3

3 Simulink implementation 7

4 Conclusions 8

5 Appendix 9

2



1 Introduction
The Grid Search Method [1] is an optimization routine that calculates the minimum point of a
multi-variable function. This method is based on a grid defined by multiple dimensions. Each
dimension has a range of values. Each range is divided into a set of equal-value intervals. The
multi-dimensional grid has a centroid which locates the optimum point. The search involves
multiple passes. In each pass, the method updates the node (point of intersection) with the
least function value. This node becomes the new centroid and builds a smaller grid around it.
Successive passes end up shrinking the multidimensional grid around the optimum.

In what follows, the implementation of the Grid Search Method is presented, both as a
Matlab m file and in Matlab/Simulink.

2 Matlab m file
The Matlab function is defined as:

[X, BestF, Iters] = GridSearch(N, XLo, XHi, NumDiv, MinDeltaX, Eps Fx, MaxIter, myFx)

The function has the following input paramenters:

1 N - number of optimization variables
2 XLo - vector of lower values
3 XHi - vector of higher values
4 NumDiv - vector of number of divisions along each dimension
5 MinDeltaX - vector of termination tolerance for each variable
6 Eps_Fx - termination tolerance for the function value
7 MaxIter - maximum number of iterations
8 myFx - name of the optimized function

The function generates the following output:

1 X - vector of optimized variables
2 BestF - function value at optimum
3 Iters - number of iterations

The GridSearch.m file is listed in what follows:

1

2 function [XBest,BestF,Iters]=GridSearch(N, XLo, XHi, NumDiv, ...
3 MinDeltaX, Eps_Fx, MaxIter, myFx)
4 % Function performs multivariate optimization using the
5 % grid search.
6 %
7 % Input
8 %
9 % N - number of optimization variables

10 % XLo - vector of lower values
11 % XHi - vector of higher values
12 % NumDiv - vector of number of divisions along each dimension
13 % MinDeltaX - vector of termination tolerance for each variable
14 % Eps_Fx - termination tolerance for the function value
15 % MaxIter - maximum number of iterations
16 % myFx - name of the optimized function
17 %

3



18 % Output
19 %
20 % X - vector of optimized variables
21 % BestF - function value at optimum
22 % Iters - number of iterations
23 %
24 XHi_ev = XHi;
25 XLo_ev = XLo;
26 Xcenter = (XHi + XLo) / 2;
27 XBest = Xcenter;
28 DeltaX = (XHi - XLo) ./ NumDiv;
29 BestF = feval(myFx, XBest, N);
30 if BestF >= 0
31 LastBestF = BestF + 100;
32 else
33 LastBestF = 100 - BestF;
34 end
35 X = XLo; % initial search value
36

37 Iters = 1;
38 bGoOn = 1;
39

40 while (bGoOn > 0) && (abs(BestF - LastBestF) > Eps_Fx) && (Iters <= MaxIter)
41

42 bGoOn2 = 1;
43

44 while bGoOn2 > 0
45

46 Iters = Iters + 1;
47

48 X_ev = max(XLo_ev,min(XHi_ev,X));
49 F = feval(myFx, X_ev, N);
50 if F < BestF-Eps_Fx/10 % updated only if F changed with more than Eps_Fx/10
51 LastBestF = BestF;
52 BestF = F;
53 XBest = X_ev;
54 end
55

56 % search next grid node
57 for i = 1:N
58 if X(i) >= XHi(i)
59 if i < N
60 X(i) = XLo(i);
61 else
62 bGoOn2 = 0;
63 break
64 end
65 else
66 X(i) = X(i) + DeltaX(i);
67 break
68 end
69 end
70

71 end % while bGoOn2 > 0
72

73

74 XCenter = XBest;
75 DeltaX = DeltaX ./ NumDiv;

4



76 XLo = XCenter - DeltaX .* NumDiv / 2;
77 XHi = XCenter + DeltaX .* NumDiv / 2;
78 X = XLo; % set initial X
79

80 bGoOn = 0;
81 for i=1:N
82 if DeltaX(i) > MinDeltaX(i)
83 bGoOn = 1;
84 end
85 end
86

87 end % while bGoOn > 0 && () && ()

Example 1

First, we test the Grid Search Method on the Matlab peaks function, given by:

J(x1, x2) = 3(1− x1)
2e−x

2
1−(x2+1)2 − 10

(x1

5
− x3

1 − x5
2

)
e−x

2
1−x2

2 − 1

3
e−(x1+1)2−x2

2 (1)

Function call:

[XBest,BestF,Iters] = GridSearch(2, [-3 -3], [3 3], [4 4], [1e-5 1e-5], 1e-3, 1000, ’fx1’)

Figure 1: The Grid Search Method applied on the Matlab peaks function: • - evaluation grid,
• - centroid, ? - optimum.

1 XBest =
2

3 0.2813 -1.5938
4

5 BestF =
6

7 -6.5158
8

9 Iters =
10

11 76
12

13 Elapsed time is 0.006446 seconds.

5



Example 2

Second, we show how the Grid Search Method can be used to find the peak of the White
Mountain. The White Mountain map resides in Matlab under mtWashington.

Function call:

[XBest,BestF,Iters] = GridSearch(2, [310965 4902495], [320115 4915455], [5 5], [1 1], 1, 1000, ’fx2’)

Figure 2: The Grid Search Method applied on the White Mountain function: • - evaluation grid,
• - centroid, ? - optimum.

1 XBest =
2

3 1.0e+06 *
4

5 0.3161 4.9043
6

7 BestF =
8

9 6.2800e+03
10

11 Iters =
12

13 199
14

15 Elapsed time is 0.218983 seconds.

The surfaces used to test the algorithms are highly nonlinear and have a non-smooth behav-
ior. In addition, the surfaces are characterized by local minima and maxima. These surfaces
are very challenging for gradient based solvers that can easily get stuck in a local minima or
maxima. The Grid Search Method is a gradient free approach. From the results we see that
the Grid Search Method successfully finds the global solution with reasonable computational
complexity.

6



3 Simulink implementation
This section presents the Matlab/Simulink implementation of the Grid Search Method. Two
versions of the method are implemented: with constant bounds and with variable bounds. For
brevity, only the one with constant bounds is presented here. In Fig. 3, we illustrate the Grid
Search Simulink block and the interface that allows user to specify the optimization parameters.
The Grid Search Simulink block consists of two iterators. The function or Simulink block to be
optimized needs to be placed inside the second iterator (see Appendix).

Inputs

XBest

BestF

Iterations

Outputs

GridSearch

(a) (b)

Figure 3: (a) The Grid Search Simulink block. (b) The Grid Search Simulink block parameters.

Example

In what follow we illustrate the utility of using this method to track online a certain optimum.
To exemplify, we define a nonlinear 3 input objective function as:

J(x, xopt) = Jmin

(
1 +

1

x1opt

(x1 − x1opt)
2 +

1

x2opt

(x2 − x2opt)
2 + (x3 − x3opt)

4

)
(2)

where, x = [x1 x2 x3]
> is the input to be computed and xopt = [x1opt x2opt x3opt]

> is the
optimum to be found. For exemplification we choose here Jmin = 100. Note that by knowing
the function it is easy to see that the optimum of J = Jmin is reached when x = xopt. In what
follows, we check the effectiveness of the Grid Search Method by applying it to function (2).

7



x 1

100

200

300 optimum computed
x 2

0

2

4

x 3

-2

0

2

J

100

100.02

100.04

time [s]
0 5 10 15 20 25 30

It
er

at
io

n
s

400

600

800

(a)

x 1

100

200

300 optimum computed

x 2

0

2

4

x 3

-2

0

2

J
100

100.02

100.04

time [s]
0 5 10 15 20 25 30

It
er

at
io

n
s

400

600

800

(b)

Figure 4: (a) Grid Search Method results computed at a sampling rate Ts = 0.1 s. (b) Grid
Search Method results computed at a sampling rate Ts = 0.5 s.

In Fig. 4, the simulation results are illustrated. Two simulations were performed, one in
which the algorithm is triggered at the base sampling rate and one in which the algorithm is
triggered at slower sampling rate as compared to the base sampling rate. From the simulation
results, it can be seen that the method successfully finds the three optimum values. Around 600
function evaluations are needed in order to find the optimum with an accuracy of 10−4.

Remark 1 Due to the fact that Simulink does not accept any block needing elapsed time (such
as Discrete-Time Integrator block) placed within the While Iterator subsystem, at this moment
the Grid Search Simulink block cannot be used to optimize a dynamic system. This will require
a system solver within the Simulink solver, which is not available in the latest Matlab release
(R2014b). A work around is to compute analytically the solution for the dynamic system, such
that the While Iterator subsystem sees it as a static block.

4 Conclusions
In this report the Grid Search Method has been presented. The method has been shown to be
effective in finding the global solution for an optimization problem that is non-smooth, nonlin-
ear and is characterized by local minima or maxima. The method can be used online and offline
to solve multidimensional problems.

To reduce computational complexity while increasing the accuracy, the Grid Search Method
can be combined with a gradient-based method. First, specify a less tight tolerances for the Grid
Search Method and find a solution close to the global optimum. Second, trigger a gradient-based
method to obtain the optimum solution at the required accuracy.

8



References
[1] Namir Shammas, Multivariable optimization by grid search,

http://www.namirshammas.com/MATLAB/mainMATL.htm

5 Appendix

1
XBest

1
Inputs

bGoOn

fcn1XLo_in

XHi_in

NumDiv

MinDeltaX

X

bGoOn

MATLAB Function1

NumDiv

MinDeltaX

XLo

XHi

2
BestF

3
Iters

AND

> 0

>
Eps_Fx

<= MaxIter

4
Outputs

BestF1

IC

IC

Figure 5: Iterator 1 of the Grid Search Method.

9



2
XBest

5
Iters2

Xv ar

Input1

Fobj

Output1

Variable optimum fcn

D

3
BestF

4
LastBestF

4
Inputs

1
Outputs

[Xvar] [Fobj]

X

B

Las

Figure 6: Iterator 2 of the Grid Search Method.

10


